期刊信息
刊名:电网技术
主办:国家电网有限公司
主管:国家电网有限公司
ISSN:1000-3673
CN:11-2410/TM
语言:中文
周期:月刊
影响因子:3.184708
数据库收录:
文摘杂志;北大核心期刊(1992版);北大核心期刊(1996版);北大核心期刊(2000版);北大核心期刊(2004版);北大核心期刊(2008版);北大核心期刊(2011版);北大核心期刊(2014版);北大核心期刊(2017版);中国科学引文数据库(2011-2012);中国科学引文数据库(2013-2014);中国科学引文数据库(2015-2016);中国科学引文数据库(2017-2018);中国科学引文数据库(2019-2020);工程索引;哥白尼索引;日本科学技术振兴机构数据库;文摘与引文数据库;中国科技核心期刊;期刊分类:电力工业
期刊热词:
电力系统
主办:国家电网有限公司
主管:国家电网有限公司
ISSN:1000-3673
CN:11-2410/TM
语言:中文
周期:月刊
影响因子:3.184708
数据库收录:
文摘杂志;北大核心期刊(1992版);北大核心期刊(1996版);北大核心期刊(2000版);北大核心期刊(2004版);北大核心期刊(2008版);北大核心期刊(2011版);北大核心期刊(2014版);北大核心期刊(2017版);中国科学引文数据库(2011-2012);中国科学引文数据库(2013-2014);中国科学引文数据库(2015-2016);中国科学引文数据库(2017-2018);中国科学引文数据库(2019-2020);工程索引;哥白尼索引;日本科学技术振兴机构数据库;文摘与引文数据库;中国科技核心期刊;期刊分类:电力工业
期刊热词:
电力系统
电力工业论文_基于虚拟相似日与DA-LSTPNet的地
【作者】网站采编
【关键词】
【摘要】文章摘要:针对短期负荷预测精细化的需求,提出基于虚拟相似日与双阶段注意力机制的长短期时序神经网络(DA-LSTPNet)的地区级短期负荷预测方法。为获得与负荷相匹配的细粒度实时
文章摘要:针对短期负荷预测精细化的需求,提出基于虚拟相似日与双阶段注意力机制的长短期时序神经网络(DA-LSTPNet)的地区级短期负荷预测方法。为获得与负荷相匹配的细粒度实时气象数据,首先基于粗粒度的气象数据,利用灰色关联度和关联度加权法获取含细粒度气象数据的气象虚拟相似日。然后,采用最大信息系数(MIC)对气象特征信息与负荷进行非线性关联性分析,构建MIC加权下的负荷虚拟相似日选取算法,解决选取历史日作为传统负荷相似日而导致的过分局部相似乃至非相似的问题。最后,针对过往预测模型缺乏考虑特征因素与局部负荷细粒度变化之间联系特性的问题,构建能够有效挖掘负荷特征数据长期宏观以及短期局部变化特性的DALSTPNet进行日前短期负荷预测。实验仿真以中国南方某地区电网实际负荷数据为例,采用多种形式的仿真验证了所提预测方法具有更高的预测精度和普适性。
文章关键词:
文章来源:《电网技术》 网址: http://www.dwjszzs.cn/qikandaodu/2021/0924/1376.html