期刊信息
刊名:电网技术
主办:国家电网有限公司
主管:国家电网有限公司
ISSN:1000-3673
CN:11-2410/TM
语言:中文
周期:月刊
影响因子:3.184708
数据库收录:
文摘杂志;北大核心期刊(1992版);北大核心期刊(1996版);北大核心期刊(2000版);北大核心期刊(2004版);北大核心期刊(2008版);北大核心期刊(2011版);北大核心期刊(2014版);北大核心期刊(2017版);中国科学引文数据库(2011-2012);中国科学引文数据库(2013-2014);中国科学引文数据库(2015-2016);中国科学引文数据库(2017-2018);中国科学引文数据库(2019-2020);工程索引;哥白尼索引;日本科学技术振兴机构数据库;文摘与引文数据库;中国科技核心期刊;期刊分类:电力工业
期刊热词:
电力系统
主办:国家电网有限公司
主管:国家电网有限公司
ISSN:1000-3673
CN:11-2410/TM
语言:中文
周期:月刊
影响因子:3.184708
数据库收录:
文摘杂志;北大核心期刊(1992版);北大核心期刊(1996版);北大核心期刊(2000版);北大核心期刊(2004版);北大核心期刊(2008版);北大核心期刊(2011版);北大核心期刊(2014版);北大核心期刊(2017版);中国科学引文数据库(2011-2012);中国科学引文数据库(2013-2014);中国科学引文数据库(2015-2016);中国科学引文数据库(2017-2018);中国科学引文数据库(2019-2020);工程索引;哥白尼索引;日本科学技术振兴机构数据库;文摘与引文数据库;中国科技核心期刊;期刊分类:电力工业
期刊热词:
电力系统
电力工业论文_基于注意力机制优化组合神经网
【作者】网站采编
【关键词】
【摘要】文章摘要:为解决电力缺陷描述专业词汇较多分词准确率不佳以及单一神经网络模型自身存在不足的问题,提出了基于注意力机制优化组合神经网络的电力缺陷等级确定方法。该方法首先
文章摘要:为解决电力缺陷描述专业词汇较多分词准确率不佳以及单一神经网络模型自身存在不足的问题,提出了基于注意力机制优化组合神经网络的电力缺陷等级确定方法。该方法首先使用分布式字粒度向量对电力缺陷描述进行表示,然后使用由卷积神经网络和双向长短时记忆网络组成的卷积循环神经网络对电力缺陷描述的局部特征和序列特征进行特征提取,最后采用注意力机制对组合神经网络得到的语义特征进行权重分配,减少关键特征的丢失,进一步增强关键信息对分类结果的影响。以云南电网公司2014—2019年间11万条缺陷描述数据作为实验对象,文中所提方法的Acc、MF1值和WF1值分别为0.927 5、0.911 2和0.927 5,验证了本方法在电力缺陷等级确定中的有效性和可行性,为电网的智能化运行提供帮助。
文章关键词:卷积循环神经网络,字粒度,注意力机制,电力缺陷描述,状态评价,
文章来源:《电网技术》 网址: http://www.dwjszzs.cn/qikandaodu/2021/0908/1363.html
上一篇:
电力工业论文_配电网保护快速算法研究
下一篇:
电力工业论文_深度学习辅助的区域交直流配电